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Abstract. The absence of local quadratic Lagrangian density of Takahashi-Umezawa type 
for the massive spin-3 tensor field has some important implications in both the relativistic 
and Euclidean field theories. 

The recent result of Kawasaki et a1 (1975) and the author’s calculation (Lim 1977, 
unpublished) have confirmed an earlier conjecture of the author that the general 
Lagrangian approach of Takahashi and Umezawa (1953) does not work for quantum 
fields with spin s > 3  (Lim 1976). The basic idea is that the number of arbitrary 
parameters which appear in the Takahashi-Umezawa Lagrangian density increases 
rapidly as the spin value increases, For s > 2 these parameters increase to such an 
extent that it is impossible to obtain a consistent set to guarantee the existence of a 
local Lagrangian density. 

This is indeed the case for spin-3 massive tensor field 4,”,&). If one assumes a 
second-order quadratic local Lagrangian density in the form 

L = ~ ~ , y ~ ( ~ ) ~ ~ u A ~ p a K ( a ) ~ p o K ( ~ ) ,  (1) 
where A e v A * v * ( ~ )  is a local second-order differential operator, then the Euler- 
Lagrange equation 

( a ) 4 P K ( x )  = (2 ) A W ~ U K  

so obtained cannot be decomposed into the Klein-Gordon equation and all the 
subsidiary conditions, as required by Takahashi-Umezawa formulation. 

This result also confirms the belief that auxiliary fields need to be introduced in 
order to obtain a consistent Lagrangian field theory for spin s > 2 (Chang 1967, Singh 
and Hagen 1974, Kobayashi and Mori 1975). Auxiliary fields are required to 
eliminate the non-local terms involving (d2)-’ (i.e. the inverse of D’ Alembertian 
operator) in the Lagrangian density. In other words, A(a) in (1) is not a bona fide local 
operator and one gets a non-local Lagrangian field theory for massive spin-3 particle. 
This does not come as a surprise since the auxiliary field method has been frequently 
employed to obtain a consistent quantum theory of higher spin fields with interaction. 

Since the relativistic propagator is given by the negative inverse of the Fourier 
transform of A@), so the non-existence of a local A@) for the massive spin-3 tensor 
field implies that the corresponding Euclidean propagator does not have a local 
inverse. This means that the generalised Gaussian random field constructed with this 
Euclidean propagator as covariance does not satisfy the Markov property of Nelson 
(1973a, b), since the necessary condition for a generalised Gaussian field to be 
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Markovian is that the inverse of the covariance be local (Nelson 1973a, b, Goodman 
1975). Thus the method we used to construct Euclidean massive Markov fields with 
spin s c 2 fails for the spin-3 case (Lim 1976). 

Another alternative of getting a massive spin-3 theory is to use the (2s+1)- 
component field of Weinberg (1964). However such an approach does not require the 
explicit construction of the Lagrangian density, so the Markov property of the cor- 
responding Euclidean field is not transparent (Ozkaynak 1974). 

However, one can still construct a Euclidean Gaussian field from the relativistic 
spin-3 field. For a massive tensor field ~ $ ~ ~ ~ ( x )  which is traceless, divergenceless and 
totally symmetric, the two-point Wightman function is given by 

(x -x’) ~ ( r v A , ~ ’ v ‘ A ’  

= (4  ””(x)4 +A’(X’)) 

where W(x -x’) is the two-point Wightman function for the corresponding massive 
scalar field, and d” = g N U  + m-ZP6+”, sym(pvA), ( p f v f A ’ )  denotes symmetrisation in 
p, U, A and p’ ,  v’, A ‘ .  

To obtain the corresponding Euclidean (or Schwinger) two-point function one 
needs to replace all the Minkowski metric g F u  by the Euclidean metric Sij ,  in addition 
to the usual analytic continuation to pure imaginary time of the Wightman two-point 
function. This can be achieved by the following transformation: 

where A ,  = 1 if i = p = 1, 2, 3; A40 = i and Ai, = 0 otherwise. 
The Euclidean two-point function given in equation ( 5 )  is not positive semi- 

definite. Note that we have changed all the g F U  to Sij without altering the relevant 
numerical coefficients, hence the trace of s l ‘ k , i f j , k *  is non-zero. However, one can 
obtain the correct two-point Schwinger function by replacing equation ( 5 )  by 

(6a 1 

(6b 1 
with 2, denoting the sum over all distinct combinations of indices (ik, jv, kA) and (i ’p’,  
j ’  V I ,  k’A ’). Since 4p (x) = 0, the additional term $Sijg,, in (6) adds only contact terms 
to the two-point function, containing delta function and its derivatives (recall that 
Schwinger functions are defined from Wightman functions but for distributions con- 
centrated at coinciding points). It can be checked that s i k , i , j p k p  is traceless and positive 
semi-definite. 

One can now construct the Euclidean one-particle space K for the massive spin-3 
particle following the usual method with real Schwartz symmetric tensor test functions 
as elements and the two-point Schwinger function (6) as the inner product. The 
Euclidean massive spin-3 field e i jk  can then be defined as the generalised Gaussian 
random field over K with mean zero and covariance given by the inner product in K. 
Clearly, such a field is covariant under the full Euclidean group ISO(4). It is also not 

S $ i , j , k , ( x  - x ’ )  = Aijk,i,j,k,;,uA,,,v~A, Wc””A~c”‘”A’ (x -xf,i(xo-xA)), 

where 
1 A ijk . i ’ j ’k ’ ;p4 . r ‘u ’A‘  = TS C (AiWAjv + $ S i j g p u ) ( A i , w * A j . u ,  +$Si’i’g,’u’)(AkAAk’A’), 

C 

t Here we have used the convention go’ = +go”, g” = - 6”. 
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difficult to see that Oijk is reflexive. Let T be a unitary representation of ISO(4) on the 
underlying probability space such that 

T(R,a)eijk(f)r-’(R,a)= 1 R,.’Ri,.’R~~’ei‘r&‘CfR,a), (7 ) 
i‘,j‘,&‘ 

where R E S0(4), a E R4 and f ~ , ~ ( x ) = f ( R - ’ ( x  -a)). If T@) is the reflection in the 
hyperplane x4 = 0 (denoted by I&,), then for all f~ K with support in no we have 

where f, = f ( x , - x 4 ) .  Equation (8) guarantees the reflexivity of Oijk (see Lim 1976 for 
detailed argument). 

Finally we note that Oij& constructed above is non-Markovian. This is due to the 
fact that S&i,jJk, does not have a local inverse. We remark that the matrix trans- 
formation in (6) does not alter the non-locality of the inverse of Ww”h~w””A‘ since 
A ijk,i’j’&’;wuh,w’u’h‘ is just a non-singular constant matrix. 

Thus we have constructed a rank-3 Euclidean Gaussian tensor field for spin-3 
massive particle. Even though it is non-Markovian, it satisfies the axioms Osterwalder 
and Schrader (1973,1975) and so it can be put into this more general framework. The 
above construction can be easily generalised to spin s > 3  tensor fields, which most 
likely are non-Markovian. 
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